

自动重复测试系统PCC

产品简介

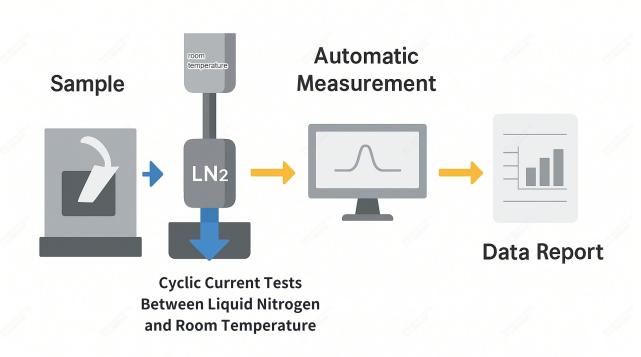
高温超导聚变装置在脉冲运行工况下,会经历多次循环升/降温、励/退磁过程。为评估高温超导磁体的冷热循环寿命和极限性能表现,星环聚能开发了一套自动重复运行的循环温控测试系统(Pyro-Cryo Cycler, PCC)。

这是一款面向高温超导磁体性能研究的智能化 测试平台,可在无人值守的情况下,自动完成 线圈在液氮至室温工况下的多轮疲劳和载流性 能测试,实现高效率、长周期、全参数的测试 与监测。

核心优势及亮点

- 自动化运行:支持多轮冷热循环与电磁加载的无人值守测试,实现24小时连续运行。
- **多维参数同步测量:**同时采集温度、电压、电流、磁场等关键数据,实时计算线圈性能指标。
- **全自动数据分析**:自动进行电磁数据分析和曲线拟合,提取线圈电感和接头电阻随循环次数的变化趋势。
- 高安全性与可靠性:内置异常检测与保护机制,确保测试过程稳定安全。
- 数据可追溯与可视化:全程自动记录测试数据,配套软件支持实时显示与历史分析。
- **模块化设计**:测试腔体、电源系统、控制与数据采集单元可灵活配置,适配不同类型 线圈与实验需求。

产品参数


项目			规格描述
尺寸与重量	尺寸(mm)		1690*1180*1995
	重量(kg)		约 750
材质	钣金件		6061-T4(SS)
	非金属件		FR-4 玻纤板、G10
	金属件		6061-T4(SS)、AISI 304
	型材架		6061-T4(SS)
电源规格	输入电压/电流		380 V/40 A
	功耗		26 KW
核心性能指标	采样率	电压、电流、磁场	1-2000 HZ
		温度	1-10 HZ
	采集信号误差		< 0.5%
	信号类别		电压、电流、磁场、温度、液位
	工作时间		不限时
	回温时间		30 分钟(77K 回到室温)
	回温选择		0~55℃可调
	测试介质		液氮
环境参数	工作温度		0~40°C
	测试温度		-197~55℃
	存储温度		常温
	湿度范围		干燥

功能详解

- **核心功能**:实现无人看管无限次线圈自动通流、数据采集处理及存储、失超保护、自动回温,测试过程中液位补偿与声光报警。
- **特色功能**:智能报警,实现在设备无人看管状态下出现报警时,设备响应停止测试的同时将报警讯息通过飞书发送给用户,实现快速响应。

流程示意图

应用场景

本产品适用于高温超导线圈和样件的长期耐久性测试,可以自动化手段取代传统人工测试方式,解决人工操作效率低、数据连续性差、测试条件难复现等问题,助力科研人员精准评估线圈在冷热循环与电磁力作用下的疲劳特性,为磁体结构优化和工程化应用提供坚实数据支撑。